skip to main content


Search for: All records

Creators/Authors contains: "Nguyen, Nam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. A novel precision single-ion conductor with phenylsulfonyl(trifluoromethylsulfonyl)imide lithium salt covalently bound to every fifth carbon of a polyethylene backbone, p5PhTFSI-Li, was synthesized via ring opening metathesis polymerization (ROMP) followed by post polymerization modification. The conversion of poly(4-phenylcyclopentene), bearing 94% sulfonate anions, to trifluoromethanesulfonimide (TFSI) anions was highly efficient (∼90%) as determined by 19 F NMR analysis and corroborated through other spectroscopic methods. The flexible hydrocarbon backbone combined with a bulky TFSI anion led to an observable glass transition temperature of 199 °C even at these high levels of ionization. A high thermal stability up to 375 °C was also observed. Blending of p5PhTFSI-Li with poly(ethylene oxide) at various compositions was performed to investigate electrochemical performance and transference numbers with respect to the lithium electrode using a combination of impedance and polarization methods. At 90 °C and a 50 : 50 wt% blend composition, this system displayed the highest reported conductivity (2.00 × 10 −4 S cm −1 ) of a system with a demonstrated lithium-ion transference number near unity. Such performance is also atypical of single ion conductors produced through post-polymerization modification, which we attribute to the high yield of TFSI conversion. Investigations into the complex miscibility and phase behavior of these blends at various compositions was also probed by a combination of microscopy and differential scanning calorimetry, which is discussed with reference to computational predictions of how charge correlations affect polymer blend phase behavior. 
    more » « less
  3. Abstract

    We study a model for adversarial classification based on distributionally robust chance constraints. We show that under Wasserstein ambiguity, the model aims to minimize the conditional value-at-risk of the distance to misclassification, and we explore links to adversarial classification models proposed earlier and to maximum-margin classifiers. We also provide a reformulation of the distributionally robust model for linear classification, and show it is equivalent to minimizing a regularized ramp loss objective. Numerical experiments show that, despite the nonconvexity of this formulation, standard descent methods appear to converge to the global minimizer for this problem. Inspired by this observation, we show that, for a certain class of distributions, the only stationary point of the regularized ramp loss minimization problem is the global minimizer.

     
    more » « less
  4. Hypoxic-Ischemic Encephalopathy (HIE) in the brain is the leading cause of morbidity and mortality in neonates and can lead to irreparable tissue damage and cognition. Thus, investigating key mediators of the HI response to identify points of therapeutic intervention has significant clinical potential. Brain repair after HI requires highly coordinated injury responses mediated by cell-derived extracellular vesicles (EVs). Studies show that stem cell-derived EVs attenuate the injury response in ischemic models by releasing neuroprotective, neurogenic, and anti-inflammatory factors. In contrast to 2D cell cultures, we successfully isolated and characterized EVs from whole brain rat tissue (BEV) to study the therapeutic potential of endogenous EVs. We showed that BEVs decrease cytotoxicity in an ex vivo oxygen glucose deprivation (OGD) brain slice model of HI in a dose- and time-dependent manner. The minimum therapeutic dosage was determined to be 25 μg BEVs with a therapeutic application time window of 4–24 h post-injury. At this therapeutic dosage, BEV treatment increased anti-inflammatory cytokine expression. The morphology of microglia was also observed to shift from an amoeboid, inflammatory phenotype to a restorative, anti-inflammatory phenotype between 24–48 h of BEV exposure after OGD injury, indicating a shift in phenotype following BEV treatment. These results demonstrate the use of OWH brain slices to facilitate understanding of BEV activity and therapeutic potential in complex brain pathologies for treating neurological injury in neonates. 
    more » « less
  5. null (Ed.)
  6. Adaptive radiation is an important mechanism of organismal diversification and can be triggered by new ecological opportunities. Although poorly studied in this regard, parasites are an ideal group in which to study adaptive radiations because of their close associations with host species. Both experimental and comparative studies suggest that the ectoparasitic wing lice of pigeons and doves have adaptively radiated, leading to differences in body size and overall coloration. Here, we show that long-distance dispersal by dove hosts was central to parasite diversification because it provided new ecological opportunities for parasites to speciate after host-switching. We further show that among extant parasite lineages host-switching decreased over time, with cospeciation becoming the more dominant mode of parasite speciation. Taken together, our results suggest that host dispersal, followed by host-switching, provided novel ecological opportunities that facilitated adaptive radiation by parasites. 
    more » « less
  7. Abstract

    We investigated the prevalence of coronaviruses in 44 bats from four families in northeastern Eswatini using high-throughput sequencing of fecal samples. We found evidence of coronaviruses in 18% of the bats. We recovered full or near-full-length genomes from two bat species:Chaerephon pumilusandAfronycteris nana, as well as additional coronavirus genome fragments fromC. pumilus,Epomophorus wahlbergi,Mops condylurus, andScotophilus dinganii. All bats from which we detected coronaviruses were captured leaving buildings or near human settlements, demonstrating the importance of continued surveillance of coronaviruses in bats to better understand the prevalence, diversity, and potential risks for spillover.

     
    more » « less
  8. Abstract

    Single‐ion conducting polymer electrolytes are of interest for use with advanced battery electrodes such as lithium metal, but achieving sufficiently high conductivity has been challenging. In this work, a model system containing charged sites that are precisely spaced along the polymer backbone is explored. Precision sulfonated poly(4‐phenylcyclopentene) lithium salt (p5PhS‐Li) with a high degree of sulfonation (> 90%) is synthesized and blended with poly(ethylene oxide) (PEO) to investigate the thermodynamic and transport properties. Melting point depression is measured via differential scanning calorimetry, ionic conductivity,κ, is determined using electrochemical impedance spectroscopy, and the fraction of current carried by Li+is estimated based on steady‐state current measurements. In conjunction with a density measurement, melting point depression is used to find an effective Flory–Huggins interaction parameter,χeff=   − 0.21, suggesting miscibility of the blend.κspans a large range from 2 × 10−11to 2 × 10−7S cm−1over the composition and temperature range investigated. The fraction of charge carried by lithium ions also spans a significant range from 0.12 in majority PEO blend to 0.98 in majorityp5PhS‐Li blend. This study addresses several limitations of sulfonated polystyrene and opens up the possibility of precisely controlling the spacing of other anion types.

     
    more » « less